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Neuromorphic Computing

Hardware based on the 

structures, processes, and 

capacities of neurons and 

synapses in biological brains

Spiking neurons measure and 

encode only the discrete 
analog signal changes

Only the small portion of neurons 

actually processing spikes are using 

energy; the rest of the computer 
remains idle

The most common form 

of neuromorphic 

hardware is the spiking 

hardware that implement 

Spiking Neural Network 

(SNN)
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Neuromorphic Vision

The retina doesn’t send picture frames; 

it preprocesses the light and transmits only changes in light intensity

Output data stream is sparse 

(computation and energy efficient)

Fast response ( Asynchronous)

Sensitive to extreme light conditions

Each pixel responds to illumination changes asynchronously
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ANN Vs SNN

Standard Artificial Neuron

Ignores the time domain complexity of the brain

Spiking Neuron

Maps state and time to spikes
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Project Goals

Identify how event-based 

data can be used in SNNs

(NMNIST data)

Identify how static 

data can be used in 

SNNs

(MNIST data)

Carrying out classification tasks 

with SNNs

(with different spatial interpolation 

techniques)

Carrying out object detection 

tasks with SNNs

(with different spatiotemporal 

interpolation techniques)

Identifying the effects of 

spatiotemporal compression of 

event data on Machine Learning 

model accuracy

Identify how event-based 

data can be used in SNNs

(NMNIST data)

Carrying out classification tasks 

with SNNs

(with different spatial interpolation 

techniques)

Carrying out object detection 

tasks with SNNs

(with different spatiotemporal 

interpolation techniques)

Identifying the effects of 

spatiotemporal compression of 

event data on Machine Learning 

model accuracy

Identify how static 

data can be used in 

SNNs

(MNIST data)
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Methods of Incorporating ML to Neuromorphic Data

Create frames using the events and 

feed them to existing deep networks. 

Frames are generated on demand 

(no events = no frames)

Develop event-based AI algorithms
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Methods of Incorporating ML to Neuromorphic Data

Create frames using the events and 

feed them to existing deep networks. 

Frames are generated on demand 

(no events = no frames)

Develop event-based AI algorithms
Create frames using the events and 

feed them to existing deep networks. 
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Encoding Static Data into Spike Frames

Method 1
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Encoding Static Data into Spike Frames

Method 1Method 2
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Method 2 explained
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Project Goals

Identify how event-based 

data can be used in SNNs

(NMNIST data)

Identify how static 

data can be used in 

SNNs

(MNIST data)

Carrying out classification tasks 

with SNNs

(with different spatial interpolation 

techniques)

Carrying out object detection 

tasks with SNNs

(with different spatiotemporal 

interpolation techniques)

Identifying the effects of 

spatiotemporal compression of 

event data on Machine Learning 

model accuracy
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Accumulating Event Data to Frames

Method 1: Slicing along event (Event Window)

Stream of events 
in the AER 

(Address Event 
Representation)

format:

<x, y, timestamp, polarity>

Duration of a recording = E events

The number of frames is created by waiting for a fixed number 
of events to occur

𝑆 ∈ [25, 50, 75, 100, 125, 150, 175, 200] 

To create S frames 
from a recording, wait 
for n number of events
(for this example: 

n = 3)

ON Spikes

OFF Spikes

Visualization of the two channels of a 
frame (event_count =25)

+1 → On-spikes (increase in brightness)
-1  → Off-spikes (decrease in brightness)
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Accumulating Event Data to Frames

Method 2: Slicing along time (Time Window / Voxel Grid)

Stream of events 
in the AER 

(Address Event 
Representation)

format:

<x, y, timestamp, polarity> Visualization of the two channels of a 
frame

+1 → On-spikes (increase in brightness)
-1  → Off-spikes (decrease in brightness)

ON Spikes

OFF Spikes

Duration of a recording = T

The number of frames that represent the number of timesteps 
is created by dividing the event stream into S bins

𝑆 ∈ [1𝑚𝑠, 2𝑚𝑠, 4𝑚𝑠, 6𝑚𝑠, 8𝑚𝑠, 10𝑚𝑠, 12𝑚𝑠, 14𝑚𝑠, 16𝑚𝑠] 

To create S frames 
from a recording of 
length T, divide all the 
spikes into S time bins
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Accumulating Event Data to Frames

Method 3: Voxel Cubes

To get high temporal resolution of event 
data with voxel grids, we need to have a 
large number of timesteps.

This increases linearly the number of 
computations of the SNN and thus the 
inference time and the energy consumed. 
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Accumulating Event Data to Frames

Method 3: Voxel Cubes

In voxel cubes, each time window ∆t is 
subdivided into n micro time bins 

Events belonging to a micro time bin will 
be stored in the channels dimension, 
providing finer temporal information to 
the first layer of the network. 
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Project Goals

Identify how event-based 

data can be used in SNNs

(NMNIST data)

Identify how static 

data can be used in 

SNNs

(MNIST data)

Carrying out classification tasks 

with SNNs

(with different spatial interpolation 

techniques)

Carrying out object detection 

tasks with SNNs

(with different spatiotemporal 

interpolation techniques)

Identifying the effects of 

spatiotemporal compression of 

event data on Machine Learning 

model accuracy
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SNN for Classification: Convolutional SNN

32 channels
(11 x 11 x 32)

2 channels
(34 x 34 x 2)

12 channels
(30 x 30 x 12)

12 channels
of Spiking neurons

(30 x 30 x 12)

12 channels
(15 x 15 x 12)

Channels consisting of spike 

values are down-sampled by 

max-pooling

32 channels of 
Spiking neurons

(11 x 11 x 32)

32 channels
(5 x 5 x 32)

Spiking neurons

Values generated after convolution are passed as the 

inputs to the spiking neuron layer. 

Based on the membrane potentials, spikes are 

generated and passed onto the next layer

Feature extraction Classification
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At t=14

Input (2 channels)

Convolution layer 1 output (12 channels)

Spiking neuron layer 1 spiking output (12 channels)

Change of spike count with time
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Project Goals

Identify how event-based 

data can be used in SNNs

(NMNIST data)

Identify how static 

data can be used in 

SNNs

(MNIST data)

Carrying out classification tasks 

with SNNs

(with different spatial interpolation 

techniques)

Carrying out object detection 

tasks with SNNs

(with different spatiotemporal 

interpolation techniques)

Identifying the effects of 

spatiotemporal compression of 

event data on Machine Learning 

model accuracy
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Inferencing on 

event data
Bounding box 

prediction from SNN 
SNN 

Inferencing
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SNN for Object Detection: ANN-to-SNN Conversion

ANN TrainANN RGB Frames

Training

Replace neurons 

with Spiking 

Neurons

Normalize the 

trained weights and 

biases of ANN

Conversion



SMU Classification: Restricted

21

Limitations Currently Facing

• Lack of RGB frames compatible with the event data to train the ANN.

• SNNs inherently perform very poorly in object detection tasks. (mAP@0.5 ~ 0.2)
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Ground Truths

Predictions
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Project Goals

Identify how event-based 

data can be used in SNNs

(NMNIST data)

Identify how static 

data can be used in 

SNNs

(MNIST data)

Carrying out classification tasks 

with SNNs

(with different spatial interpolation 

techniques)

Carrying out object detection 

tasks with SNNs

(with different spatiotemporal 

interpolation techniques)

Identifying the effects of 

spatiotemporal compression of 

event data on Machine Learning 

model accuracy
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