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Neuromorphic Computing

Hardware based on the
structures, processes, and
capacities of neurons and

synapses in biological brains

Only the small portion of neurons
actually processing spikes are using
energy; the rest of the computer
remains idle

The most common form
of neuromorphic
hardware is the spiking
hardware that implement
Spiking Neural Network
(SNN)

Spiking neurons measure and
encode only the discrete
analog signal changes
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Neuromorphic Vision

The retina doesn’t send picture frames;
it preprocesses the light and transmits only changes in light intensity

Static
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Event-Driven & Sparse Tensor

Dynamic

Output data stream is sparse
(computation and energy efficient)

Frame-based Event-based(EVS)
Fast response ( Asynchronous)

Sensitive to extreme light conditions
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ANN Vs SNN

Standard Artificial Neuron Spiking Neuron
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Maps state and time to spikes
Ignores the time domain complexity of the brain
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Project Goals

|dentifying the effects of
spatiotemporal compression of
event data on Machine Learning
model accuracy
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Methods of Incorporating ML to Neuromorphic Data
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Create frames using the events and
feed them to existing deep networks.
Frames are generated on demand
(no events = no frames)

4 N

Develop event-based Al algorithms
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Methods of Incorporating ML to Neuromorphic Data

Create frames using the events and
feed them to existing deep networks.
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Develop event-based Al algorithms
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Encoding Static Data into Spike Frames

Input Data

Output Layer

Input Layer

the same datasampleis passed to the
network at each time step
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Encoding Static Data into Spike Frames
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Output Layer

Input Layer

the datasampleis
converted into time-
varying spikes and
passed oneatatime
to the network
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Method 2 explained

Input Data

input=0
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Rate Coding
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Input features are used to
parameterize a binomial
distribution,whichis then
sampled from to determine
whether or not aspike occurs

Latency Coding

Eachfeaturecorrespondsto a
single spike. The intensity of
the feature determines how

fast the spike occurs. Options

forlinear or logarithmicfiring
times are available.

DeltaModulation

A Input Data

Onspikes

B 1

Onspikes + off spikes

__Taﬁl__*t
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Accumulating Event Data to Frames

Method 1: Slicing along event (Event Window)

ONSpikes , === 4=~ 1————~3~%2~—~

Stream of events
in the AER
(Address Event
Representation)
format:

<X, y, timestamp, polarity>

k
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Duration of a recording = E events

To create S frames

for n number of events _

from a recording, wait
(for this example:

n=3)
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Accumulating Event Data to Frames

\

Method 2: Slicing along time (Time Window / Voxel Grid)

———— —— o — — — — s — — — — — — — — — — — — o — — — — —

M

(Address Event
Representation)
format:

ON Spikes |
Stream of events /¢
in the AER /
/

<X, y, timestamp, polarity>

OFF Spikes |

A
v

\\

Duration of a recording =T

To create S frames
from a recording of
length T, divide all the
spikes into S time bins
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Accumulating Event Data to Frames

Method 3: Voxel Cubes

To get high temporal resolution of event
data with voxel grids, we need to have a
large number of timesteps.

This increases linearly the number of
computations of the SNN and thus the
inference time and the energy consumed.

d seconds

|

At = time window

r

At . . .
o = micro time window

i

|

A J

Voxel grid: Accumulate events over a time window of At On

Number of time steps = Lo1

At
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Accumulating Event Data to Frames

Method 3: Voxel Cubes

In voxel cubes, each time window At is
subdivided into n micro time bins

Events belonging to a micro time bin will
be stored in the channels dimension,
providing finer temporal information to
the first layer of the network.

d seconds

At = time window
4P
At . . .

: = micro time window
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Voxel grid: Accumulate events over a time window of At

Number of time steps = Ait =T

- . . . . A
Voxel cube: Divides At to n micro time bins lasting f seconds

On
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SNN for Classification: Convolutional SNN

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
. I's ™
Conv 1 Max-Pooling
Convolution Conv_2 (2x2)

(5 x 5) kernel Max-Pooling  Convolution

(2x2) (5 x 5) kernel 0
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INPUT 12 channels 12 channels 12 channels 32 channels 3? (.:hannels of 32 channels 9
(30x30x12) of Spiking neurons (15x 15x 12) (11x11x32) Spiking neurons (5x5x32) _.

2 channels (30x30x12) (11x11x32) Y OUTPUT

(34x34x2)

Spiking neurons
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Convolution layer 1 output (12 channels)
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SNN for Object Detection: ANN-to-SNN Conversion

——————————“

) ) BN |
—+

Training TN
Replace neurons
I with Spiking
Neurons

Normalize the
trained weights and
biases of ANN

F | | | | | | | | L
I Inferencing N — _l — —

\———

SNN I

Inferencing on
event data

Bounding box
l prediction from SNN
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Limitations Currently Facing

» Lack of RGB frames compatible with the event data to train the ANN.
« SNNSs inherently perform very poorly in object detection tasks. (MAP@0.5 ~ 0.2)
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|dentify how static
data can be used in
SNNs

(MNIST data)
|dentifying the effects of
spatiotemporal compression of

. Ny
/ \ / event data on Machine Learning
/ \ / model accuracy

-

|dentify how event-based
data can be used in SNNs
(NMNIST data)
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